Search results for "quantum phase"

showing 10 items of 127 documents

Structure and dielectric properties at phase transition of Na1/2Bi1/2TiO3-BaTiO3 solid solutions

2016

ABSTRACTPhase coexistence region is studied by x-ray diffraction for Na1/2Bi1/2TiO3-BaTiO3 solid solutions in the tetragonal phase side from the morphotropic phase boundary. The first order ferroelectric phase transition, determined from a jump in the temperature dependence of dielectric permittivity, is located inside the coexistence region of cubic and tetragonal phases and is below the temperature, where tetragonality disappears. At low BaTiO3 concentrations phase transition into ferroelectric state at cooling is slowly approached in time and is smeared over large temperature range. Rietveld method, applied for more precise evaluation of phase content, reveals large local deformations in…

010302 applied physicsQuantum phase transitionPhase boundaryPhase transitionMaterials scienceCondensed matter physicsFerroics02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesFerroelectricityElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceTetragonal crystal systemPhase (matter)0103 physical sciences0210 nano-technologyFerroelectrics
researchProduct

Span programs for functions with constant-sized 1-certificates

2012

Besides the Hidden Subgroup Problem, the second large class of quantum speed-ups is for functions with constant-sized 1-certificates. This includes the OR function, solvable by the Grover algorithm, the element distinctness, the triangle and other problems. The usual way to solve them is by quantum walk on the Johnson graph. We propose a solution for the same problems using span programs. The span program is a computational model equivalent to the quantum query algorithm in its strength, and yet very different in its outfit. We prove the power of our approach by designing a quantum algorithm for the triangle problem with query complexity O(n35/27) that is better than O(n13/10) of the best p…

CombinatoricsDiscrete mathematicsGrover's algorithmQuantum phase estimation algorithmSimon's problemQuantum walkQuantum algorithmQuantum algorithm for linear systems of equationsMathematicsQuantum complexity theoryQuantum computerProceedings of the forty-fourth annual ACM symposium on Theory of computing
researchProduct

Enlarging the gap between quantum and classical query complexity of multifunctions

2013

Quantum computing aims to use quantum mechanical effects for the efficient performance of computational tasks. A popular research direction is enlarging the gap between classical and quantum algorithm complexity of the same computational problem. We present new results in quantum query algorithm design for multivalued functions that allow to achieve a large quantum versus classical complexity separation. To compute a basic finite multifunction in a quantum model only one query is enough while classically three queries are required. Then, we present two generalizations and a modification of the original algorithm, and obtain the following complexity gaps: Q UD (M′) ≤ N versus C UD (M′) ≥ 3N,…

CombinatoricsDiscrete mathematicsQuantum sortQuantum networkQuantum phase estimation algorithmQuantum algorithmSimon's problemQuantum informationQuantum computerQuantum complexity theoryMathematics2013 Ninth International Conference on Natural Computation (ICNC)
researchProduct

Magnetic quantum criticality in quasi-one-dimensional Heisenberg antiferromagnet Cu (C4H4N2)( NO 3)2

2016

We analyze exciting recent measurements [Phys. Rev. Lett. 114 (2015) 037202] of the magnetization, differential susceptibility and specific heat on one dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2 (CuPzN) subjected to strong magnetic fields. Using the mapping between magnons (bosons) in CuPzN and fermions, we demonstrate that magnetic field tunes the insulator towards quantum critical point related to so-called fermion condensation quantum phase transition (FCQPT) at which the resulting fermion effective mass diverges kinematically. We show that the FCQPT concept permits to reveal the scaling behavior of thermodynamic characteristics, describe the experimental results quantitativ…

Condensed Matter::Quantum GasesPhysicsQuantum phase transitionCondensed matter physicsMagnonGeneral Physics and Astronomy02 engineering and technologyFermion021001 nanoscience & nanotechnology01 natural sciencesMagnetizationEffective mass (solid-state physics)Quantum mechanicsQuantum critical point0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsStrongly correlated material010306 general physics0210 nano-technologyBosonAnnalen der Physik
researchProduct

Identification of strongly correlated spin liquid in herbertsmithite

2011

Exotic quantum spin liquid (QSL) is formed with such hypothetic particles as fermionic spinons carrying spin 1/2 and no charge. Here we calculate its thermodynamic and relaxation properties. Our calculations unveil the fundamental properties of QSL, forming strongly correlated Fermi system located at a fermion condensation quantum phase transition. These are in a good agreement with experimental data and allow us to detect the behavior of QSL as that observed in heavy fermion metals. We predict that the thermal resistivity of QSL under the application of magnetic fields at fixed temperature demonstrates a very specific behavior. The key features of our findings are the presence of spin-char…

Condensed Matter::Quantum GasesPhysicsQuantum phase transitionQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsRelaxation (NMR)FOS: Physical sciencesGeneral Physics and AstronomyFermionengineering.materialSpinonMagnetic fieldCondensed Matter - Strongly Correlated ElectronsengineeringCondensed Matter::Strongly Correlated ElectronsHerbertsmithiteQuantum spin liquidQuantum Physics (quant-ph)Spin-½EPL (Europhysics Letters)
researchProduct

Quasiparticles and quantum phase transition in universal low-temperature properties of heavy-fermion metals

2006

We demonstrate, that the main universal features of the low temperature experimental $H-T$ phase diagram of CeCoIn5 and other heavy-fermion metals can be well explained using Landau paradigm of quasiparticles. The main point of our theory is that above quasiparticles form so-called fermion-condensate state, achieved by a fermion condensation quantum phase transition (FCQPT). When a heavy fermion liquid undergoes FCQPT, the fluctuations accompanying above quantum critical point are strongly suppressed and cannot destroy the quasiparticles. The comparison of our theoretical results with experimental data on CeCoIn5 have shown that the electronic system of above substance provides a unique opp…

Condensed Matter::Quantum GasesPhysicsQuantum phase transitionStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsCondensed Matter - SuperconductivityCondensationFOS: Physical sciencesGeneral Physics and AstronomyFermionSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated ElectronsQuantum critical pointHeavy fermionQuasiparticleCondensed Matter::Strongly Correlated ElectronsElectronic systemsPhase diagramEurophysics Letters (EPL)
researchProduct

Orbital-selective Mott transitions in two-band Hubbard models

2006

The anisotropic two-orbital Hubbard model is investigated at low temperatures using high-precision quantum Monte Carlo (QMC) simulations within dynamical mean-field theory (DMFT). We demonstrate that two distinct orbital-selective Mott transitions (OSMTs) occur for a bandwidth ratio of 2 even without spin-flip contributions to the Hund exchange, and we quantify numerical errors in earlier QMC data which had obscured the second transition. The limit of small inter-orbital coupling is introduced via a new generalized Hamiltonian and studied using QMC and Potthoff's self-energy functional method, yielding insight into the nature of the OSMTs and the non-Fermi-liquid OSM phase and opening the p…

Condensed Matter::Quantum GasesPhysicsQuantum phase transitionStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsHubbard modelQuantum Monte CarloMonte Carlo methodFOS: Physical sciencesCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMott transitionCondensed Matter - Strongly Correlated Electronssymbols.namesakeSelf-energysymbolsCondensed Matter::Strongly Correlated ElectronsSpin-flipHamiltonian (quantum mechanics)Journal of Magnetism and Magnetic Materials
researchProduct

Asymmetric Tunneling Conductance and the non-Fermi Liquid Behavior of Strongly Correlated Fermi Systems

2018

Tunneling differential conductivity (or resistivity) is a sensitive tool to experimentally test the nonFermi liquid behavior of strongly correlated Fermi systems. In the case of common metals the Landau– Fermi liquid theory demonstrates that the differential conductivity is a symmetric function of bias voltage V . This is because the particle-hole symmetry is conserved in the Landau–Fermi liquid state. When a strongly correlated Fermi system turns out to be near the topological fermion condensation quantum phase transition, its Landau–Fermi liquid properties disappear so that the particle-hole symmetry breaks making the differential tunneling conductivity to be asymmetric function of V . Th…

Condensed Matter::Quantum GasesPhysicsQuantum phase transitionSuperconductivityPhysics and Astronomy (miscellaneous)Condensed matter physicsmedia_common.quotation_subject02 engineering and technologyConductivity021001 nanoscience & nanotechnology01 natural sciencesAsymmetryElectrical resistivity and conductivity0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsFermi liquid theory010306 general physics0210 nano-technologyPseudogapQuantum tunnellingmedia_commonJETP Letters
researchProduct

FERMION CONDENSATION, T -LINEAR RESISTIVITY AND PLANCKIAN LIMIT

2019

We explain recent challenging experimental observations of universal scattering rate related to the linear-temperature resistivity exhibited by a large corps of both strongly correlated Fermi systems and conventional metals. We show that the observed scattering rate in strongly correlated Fermi systems like heavy fermion metals and high-$T_c$ superconductors stems from phonon contribution that induce the linear temperature dependence of a resistivity. The above phonons are formed by the presence of flat band, resulting from the topological fermion condensation quantum phase transition (FCQPT). We emphasize that so - called Planckian limit, widely used to explain the above universal scatteri…

Condensed Matter::Quantum GasesPhysicsSuperconductivityQuantum phase transitionQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)Physics and Astronomy (miscellaneous)Condensed matter physicsSolid-state physicsPhononFOS: Physical sciencesFermion01 natural sciences010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsElectrical resistivity and conductivityLattice (order)Scattering rate0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)010306 general physicsПИСЬМА В ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ
researchProduct

Ultracold quantum gases in optical lattices

2005

Artificial crystals of light, consisting of hundreds of thousands of optical microtraps, are routinely created by interfering optical laser beams. These so-called optical lattices act as versatile potential landscapes to trap ultracold quantum gases of bosons and fermions. They form powerful model systems of quantum many-body systems in periodic potentials for probing nonlinear wave dynamics and strongly correlated quantum phases, building fundamental quantum gates or observing Fermi surfaces in periodic potentials. Optical lattices represent a fast-paced modern and interdisciplinary field of research.

Condensed Matter::Quantum GasesPhysicsbusiness.industryOptical physicsPhysics::OpticsGeneral Physics and AstronomyFermionQuantum phasesPhysicistQuantum gateQuantum mechanicsPhotonicsbusinessQuantumBosonNature Physics
researchProduct